Adding a new column to DataFrame#

A new column can be added to a pandas DataFrame by assigning a value, list, or Series to a new column name. If the assigned data is a list or Series, its length must match the number of rows in the DataFrame. You can also assign a single value, which will be applied to all rows.

import pandas as pd

df = pd.DataFrame({
    "Name": ["Alice", "Bob", "Charlie"],
    "Math": [90, 85, 95]
})
print(df)

# Add a new column with a list
df["English"] = [88, 92, 80]

print(df)

# Add a new column with a single value
df["Pass"] = True

print(df)
      Name  Math
0    Alice    90
1      Bob    85
2  Charlie    95
      Name  Math  English
0    Alice    90       88
1      Bob    85       92
2  Charlie    95       80
      Name  Math  English  Pass
0    Alice    90       88  True
1      Bob    85       92  True
2  Charlie    95       80  True
import pandas as pd

data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [24, 30, 28],
    'Salary': [50000, 60000, 55000]
}
df = pd.DataFrame(data)
print(df)

# Increase all salaries by 10%
df['Salary'] = df['Salary'] * 1.10

# Add 5 years to everyone’s age
df['Age'] = df['Age'] + 5
print(df)
      Name  Age  Salary
0    Alice   24   50000
1      Bob   30   60000
2  Charlie   28   55000
      Name  Age   Salary
0    Alice   29  55000.0
1      Bob   35  66000.0
2  Charlie   33  60500.0

Arithmetic Between Columns#

You can also perform arithmetic between two or more columns to create new features.

# Create a new column 'Income_per_Age'
df['Income_per_Age'] = df['Salary'] / df['Age']
print(df)
      Name  Age   Salary  Income_per_Age
0    Alice   29  55000.0     1896.551724
1      Bob   35  66000.0     1885.714286
2  Charlie   33  60500.0     1833.333333

Applying Built-in Pandas/Numpy Functions#

Pandas integrates with NumPy functions, allowing you to apply common statistics directly.

import numpy as np

# Calculate average salary
print(df['Salary'].mean())

# Standard deviation of Age
print(df['Age'].std())

# Apply numpy square root
print(np.sqrt(df['Age']))
60500.0
3.0550504633038935
0    5.385165
1    5.916080
2    5.744563
Name: Age, dtype: float64

Applying Functions with apply()#

Sometimes you need custom transformations. The apply() method lets you apply a function to an entire column (Series) or to each row/column in a DataFrame.

# Apply to a Series
df['Age_squared'] = df['Age'].apply(lambda x: x**2)

# Apply to DataFrame across rows
df['Total'] = df[['Age','Salary']].apply(lambda row: row['Age'] + row['Salary'], axis=1)
print(df)
      Name  Age   Salary  Income_per_Age  Age_squared    Total
0    Alice   29  55000.0     1896.551724          841  55029.0
1      Bob   35  66000.0     1885.714286         1225  66035.0
2  Charlie   33  60500.0     1833.333333         1089  60533.0

Note that, we can also apply a Function Elementwise with applymap() and to a Single Column with map() but not covering in this course.

Filtering Data in Pandas#

Once you know how to select columns and rows, the next step is learning how to filter data. Filtering helps you focus on only the relevant part of your dataset, whether that means removing unnecessary columns, isolating rows that meet certain conditions, or preparing features for modeling.

Filtering Columns#

Column filtering is about selecting only the columns you need or dropping the ones you don’t. This reduces memory usage and keeps your DataFrame manageable.

# Select a single column
df['Age']

# Select multiple columns
df[['Name', 'Age']]
Name Age
0 Alice 29
1 Bob 35
2 Charlie 33

Dropping Unused Columns#

# Drop the 'Age_squared' column
df = df.drop(columns=['Age_squared'])
print(df)
      Name  Age   Salary  Income_per_Age    Total
0    Alice   29  55000.0     1896.551724  55029.0
1      Bob   35  66000.0     1885.714286  66035.0
2  Charlie   33  60500.0     1833.333333  60533.0

This is especially useful when preparing data for machine learning, where only selected features are required.

Filtering Rows (using Boolean Indexing)#

Row filtering is usually done with Boolean indexing, where you apply a condition and return only the rows where that condition is true.

# Filter rows where Age > 30
df[df['Age'] > 30]
Name Age Salary Income_per_Age Total
1 Bob 35 66000.0 1885.714286 66035.0
2 Charlie 33 60500.0 1833.333333 60533.0

Combining Multiple Conditions#

You can combine conditions using & (and) or | (or).

# Filter rows where Age > 30 AND Salary > 60000
df[(df['Age'] > 30) & (df['Salary'] > 60000)]
Name Age Salary Income_per_Age Total
1 Bob 35 66000.0 1885.714286 66035.0
2 Charlie 33 60500.0 1833.333333 60533.0

Remember to wrap each condition in parentheses.

Filtering Strings#

You can filter rows where a text column contains specific values

# Filter rows where Name contains "Bob"
df[df['Name'].str.contains("Bob")]
Name Age Salary Income_per_Age Total
1 Bob 35 66000.0 1885.714286 66035.0

Unique Values and Counting#

Sometimes you want to check how many unique values a column has, or count how often each appears.

# Unique names
print(df['Name'].unique())

# Count frequency of each name
print(df['Name'].value_counts())
['Alice' 'Bob' 'Charlie']
Name
Alice      1
Bob        1
Charlie    1
Name: count, dtype: int64